Course Name: Reliability, Risk, and Resilience

Credit:

3

Course Content (outline):

• Introduction and background

- Motivation
- o Uncertainties
- Set theory
- Probability theory
- Decision analysis
 - Decision trees
 - Expected cost theory
 - o Introduction to reliability-based design optimization

• Probabilistic models

- Discrete distribution models
- Continuous distribution models
- Bayesian inference
- Multivariate distribution models
- Reliability
 - o Analysis of functions
 - Probability transformations
 - Basic reliability problem
 - Mean-value first-order second-moment method
 - Sampling methods
- Risk
 - o Hazard
 - Infrastructure
 - Consequence
 - Disaster
 - Introduction to earthquake engineering
 - ATC-13 risk analysis framework
 - FEMA-NIBS risk analysis framework
 - Reliability-based risk analysis framework
- Resilience
 - Definition of resilience
 - Design philosophies
 - Allowable stress design
 - Load and resistance factor design

- Performance-based design
- Resilience-based design
- Properties of resilience
 - Robustness
 - Rapidity
 - Resourcefulness
 - Redundancy
- Robustness quantification via risk models
- Recovery analysis via agent-based models
- Resourcefulness via Bayesian network

References:

- Haldar and Mahadevan (1999), Probability, Reliability, and Statistical Methods in Engineering Design, Wiley
- Der Kiureghian (2005), First- and Second-order Reliability Methods. Chapter 14 in Engineering Design Reliability Handbook, Edited by Nikolaidis, Ghiocel, and Singhal, CRC Press
- ATC (1985). Earthquake Damage Evaluation for California. ATC-13, Applied Technology Council, Redwood City, CA
- FEMA-NIBS (2012). Earthquake Loss Estimation Methodology, HAZUS Technical Manual. Federal Emergency Management Agency and National Institute of Building Sciences, Washington, DC
- Cimellaro (2016), Urban Resilience for Emergency Response and Recovery. Springer International Publishing, Switzerland