Course Name:

Infrastructure Risk and Resilience

Course Number:

20008

Credit:

3

Course Content (outline):

• Introduction

- o Hazard
- Infrastructure
- Consequence
- o Man-made disasters
- o Natural disasters
- Motivation: Case Study of 1396 Kermanshah Earthquake

• Resilience-based engineering

- Definition of resilience
- Design philosophies
 - Allowable stress design
 - Load and resistance factor design
 - Performance-based design
 - Resilience-based design
- Quantification of resilience
- Properties of resilience
 - Robustness
 - Resourcefulness
 - Rapidity
 - Redundancy
- o Sustainability versus resilience
- Robustness quantification via risk analysis
 - Fragility model

- Discounting model
- o PEER's performance-based earthquake engineering framework
- ATC-13 framework
- FEMA-NIBS framework
- Reliability-based framework
 - Multi-model reliability analysis
 - Multi-hazard risk analysis
- Resourcefulness via Bayesian networks
- Recovery analysis via simulation
 - Agent-based modeling
 - Recovery modeling in *Rtx*

References:

- Cimellaro, G. P. (2016). Urban resilience for emergency response and recovery. Springer International Publishing, Switzerland.
- FEMA (2012). Seismic Performance Assessment of Buildings. FEMA P-58, Federal Emergency Management Agency, Washington, DC.
- FEMA-NIBS (2012). Earthquake Loss Estimation Methodology, HAZUS Technical Manual. Federal Emergency Management Agency and National Institute of Building Sciences, Washington, DC.
- ATC (1985). Earthquake Damage Evaluation for California. ATC-13, Applied Technology Council, Redwood City, CA.
- Various articles in top probabilistic journals.