Course Name:
Computer Applications in Civil Engineering

<table>
<thead>
<tr>
<th>Course Number: 20-350</th>
<th>Credit: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program: Undergraduate</td>
<td>Course Type: Technical elective</td>
</tr>
<tr>
<td>Prerequisite: -</td>
<td>Corequisite: -</td>
</tr>
</tbody>
</table>

Course Content (outline):

- Chapter 1: Approaches in solving civil engineering problems (2 Lectures)
 - Simultaneous linear equations and matrices
 - Advantages and limitations of numerical analyses
 - Steps in solving problems with finite element method

- Chapter 2: An introduction to stiffness method
 - Definition of stiffness matrix
 - Stiffness matrix for spring elements
 - Assembling the stiffness matrix for
 - Boundary conditions
 - Potential energy approach for the determination of spring stiffness matrix

- Chapter 3: Truss structures
 - Stiffness matrix of a bar in local coordinates
 - Transformation of vectors in two dimensions
 - Global stiffness matrix of a truss structure
 - Stress in a bar element
 - Transformation matrix and stiffness matrix in three dimensions
 - Inclined supports
 - Potential energy approach for the determination of truss equations

- Chapter 4: Beams
 - Stiffness matrix of a beam element
 - Distributed loading
 - Beam elements with internal hinge
 - Potential energy approach for the determination of beam equations

- Chapter 5: Framed structures
 - Beam stiffness matrix in two dimensions
 - Stiffness matrix for frames
 - Inclined supports

- Chapter 6: Plane stress and plane strain (4 Lectures)
 - Definition of plane stress and plane strain
 - Stiffness matrix and equations for 3 noded triangular element
 - Body forces and distributed loadings

- Chapter 7: Practical considerations in finite element problems (2 Lectures)
 - Equilibrium and compatibility
Interpretation of the results
Convergence

- Chapter 8: Constant strain triangular and axisymmetric elements (2 Lectures)
 Stiffness matrix and related equations

- Chapter 9: Thermal stresses (2 Lectures)
 Formulation of thermal problems in the finite element method

- Chapter 10: Finite difference method (4 Lectures)
 Use of Taylor series for solving differential equations
 Finite difference approach in solving civil engineering problems
 Comparison of finite element and finite difference methods

References: