Course Name:
Advanced Hydrology

Course Number:
20664

Credit:
3

Course Content (outline):

- Overview of Basic Concepts in River Basin Hydrology
 - Hydrologic cycle
 - Hydrologic processes
 - Runoff generation processes
 - Water and energy balance in hydrologic systems

- River Basin Hydro-Geomorphologic Characteristics
 - Principles of channel network initiation
 - Ordering of channel network
 - Horton laws
 - Physiographic attributes of a river basin
 - Scaling relationships between geometric and topographic attributes of a river basin
 - Stream channel hydraulic-geometry relationships
 - The width function

- Fractal Characteristics of River Basins
 - Fractals and fractal dimensions
 - The box counting dimension
 - Self-similarity in river basins
 - Tests of self-similarity
 - Self-affinity in river basins
 - Hack’s law

- Wavelet Transform and its Application in Analyzing Hydrologic and Topographic Datasets
 - Overview of Fourier transform and spectrum
 - The wavelet transform
 - Continuous wavelet transform
 - Contentious models of wavelet functions
 - Wavelet-based energy and power spectra
 - Edge detection and feature extraction
 - Discrete wavelet transform
 - The Haar and Daubechies wavelets
 - Redundancy in wavelet transform and synthesis
 - Spectral properties of river basin topography
- Travel-Time Based Modeling of Transport in Hydrological Systems
 - Lumped hydrologic modeling: opportunities and challenges
 - Overview of unit hydrograph theory and assumptions
 - Residence versus travel time of water
 - A brief overview of tracer and isotope hydrology
 - Theory of time-variant travel time distribution
 - Storage selection function and its estimation methods
 - Stochastic soil-moisture models of transport
 - Modeling river hydrochemistry using dynamic travel time distribution

- Distributed Hydrologic Modeling
 - Flow components
 - Mechanisms of runoff generation
 - Continuum consideration
 - Potential and head
 - Darcy’s equation
 - Richards' equation
 - Moisture-release equations
 - Interaction between surface and subsurface flows
 - Principles of Land Surface Models (LSMs)
 - Energy balance at the land surface
 - Modeling latent and sensible heats in hydrologic systems
 - Snowmelt modeling

- Evaluation and Calibration of Hydrologic Models
 - Calibration vs. validation
 - Parameter estimation and uncertainly
 - Sensitivity analysis
 - Overview of statistical approaches for evaluation of hydrologic models

References: